d-Symmetric d-orthogonal polynomials of Brenke type
نویسندگان
چکیده
منابع مشابه
The d-symmetric classical polynomials
An extension of symmetric classical orthogonal polynomials is d-symmetric classical d-orthogonal polynomials, d being a positive number. These polynomials and their derivatives satisfy particular (d+1)-order recurrence relations. Many works deals with these families. Our purpose is to derive some more results for this class of polynomials. In fact, in terms of hypergeometric functions, we expre...
متن کاملVector Orthogonal Polynomials of Dimension ?d
Vector orthogonal polynomials of dimension ?d where d is a nonzero positive integer are deened. They are proved to satisfy a recurrence relation with d + 2 terms. A Shohat{Favard type theorem and a QD like algorithm are given.
متن کاملOn Incomplete Symmetric Orthogonal Polynomials of Jacobi Type
In this paper, by using the extended Sturm-Liouville theorem for symmetric functions, we introduce the following differential equation ( ) 0 ) ( Φ ) 2 ) 1 ( 1 ( ) ( Φ 1 ) 1 ( 2 ) ( Φ ) 1 ( 2 2 2 2 = − − + + + ′ − + − + + − ′ ′ − x x x m a x mb a x x x x n n m n n m n m γ β α , in which ) 1 2 2 2 ( 2 + − + − = m a s s β ; ) 1 )( 1 2 ( 2 ) 1 2 2 2 ( 2 + − + + − + − + = m a r r m a s s γ and ( )( ...
متن کاملSymmetric Orthogonal Polynomials and the Associated Orthogonal L-polynomials
We show how symmetric orthogonal polynomials can be linked to polynomials associated with certain orthogonal L-polynomials. We provide some examples to illustrate the results obtained. Finally as an application, we derive information regarding the orthogonal polynomials associated with the weight function (1 + kx2)(l x2)~1/2, k>0.
متن کاملOn Incomplete Symmetric Orthogonal Polynomials of Laguerre Type
By using the extended Sturm-Liouville theorem for symmetric functions, we introduce the following differential equation ( ) 0 ) ( ) 2 ) 1 ( 1 ( ) ( 1 2 ) ( 2 2 2 = Φ − − + + + Φ′ − + − − Φ ′ ′ x x x m a x m x x x n n m n n m n γ β α , in which ) 1 2 2 2 ( 2 + − + − = m a s s β ; ) 1 )( 1 2 ( 2 ) 1 2 2 2 ( 2 + − + + − + − + = m a r r m a s s γ and ( ) ) ) 1 ( 1 )( 2 / ) 1 ( ( 2 2 n n m s r s mn ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2014
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2014.02.046